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Introduction 
Statement of the Problem. Reservoir simulation is a well-established component of reservoir 
management throughout much of the petroleum industry. Black oil simulators and more complex 
compositional, thermal, and chemical models are used as forecasting tools in both the day-to-day 
operational management of production facilities and longer-term field development planning. As 
yet, however, little use has been made of reservoir simulation coupled with systematic 
optimization techniques. The main advantage of applying these mathematical tools to decision- 
making problems is that they are less restricted by human imagination than conventional case-by- 
case comparisons. As the number of competing engineering, economic, and environmental 
planning objectives and constraints increases, it becomes difficult for human planners to track 
complex interactions and select a manageable set of promising scenarios for examination. Using 
optimization techniques, the search can range over all possible combinations of variables, locating 
strategies whose effectiveness is not always obvious to planners. Optimization also generates 
large sets of promising scenarios from which planners can choose: 

The single biggest obstacle to the application of optimization techniques using a reservoir 
simulator as the forecasting tool is the computational time required to complete a single 
simulation. Even the examination of 10 variations on a well-field design becomes cumbersome 
when a single run requires hours or days to complete. Extending the use of these simulators into 
optimization schemes involving hundreds or thousands of runs poses a computational problem 
bigger than most organizations are willing or able to tackle. The ANN-GA/SA solution to this 
problem is to train artificial neural networks (ANNs) to predict selected information that the 
simulator would normally predict. A heuristic search engine, either the genetic algorithm (GA) or 
simulated annealing (SA), searches for increasingly better strategies (such as the most productive 
in-fill drilling pattern or the best distribution of steam injection wells), using the trained networks 
to evaluate the effectiveness of each strategy in place of the original simulator. This substitution 
has been shown to reduce the time needed to evaluate pump-and-treat groundwater remediation 
strategies by a factor of nearly a million, enabling the evaluation of millions of strategies in a 
matter of days on conventional workstations. After analysis of the results of the search, the 
best-performing strategies are submitted to the original simulator to confirm their performance. 

This report describes a one-year pilot project to assess the applicability of the A?JN-GA/SA 
approach to the proposed water flood of a deep water reservoir that has been in production for 
2.5 years. The management goal was to identify the best set of injection well locations to 
maximize some economic measure of performance over a seven-year planning horizon. The 
ANN-GA&A methodology was originally developed for use on 2-D groundwater remediation 
problems. The thrust, then, of the pilot project was to determine how well these methods would 
translate to 3-D simulation of multiphase flow, with minimal adaptation of procedures. 
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ANN-GAlSA Approach to Optimization. Simulation-optimization, a term which refers to the 
coupling of models to optimization drivers, has received extensive attention in the groundwater 
remediation literature. The goal of optimization for this type of problem is usually to find one or 
more combinations of extraction and injection well locations that will at least contain and 
prefer-r-ably clean up the contamination at minimum cost or time. Although the number of well 
combinations is potentially infinite, it has been customary in groundwater optimization work to 
prespecify a grid of potentially good well locations and then formulate the search to locate the 
most time- or cost-effective subset of those locations which meets remediation goals. 

Early optimization work at the western U.S. SuperfUnd site at which the ANN-GA/SA 
methodology was developed used 20 preselected extraction locations with fixed pumping rates 
and searched for the subset producing the smallest volume of treated water (a convenient 
surrogate for cost) which contained the contamination over a 40-year planning period [ 11. Later 
work focused on 28 fixed-rate extraction and injection locations in a multiple-objective search 
which balanced cost-efficiency with mass-extraction performance, while meeting a containment 
constraint over a 50-year planning period [2]. 

Regardless of the problem formulation or the type of search technique employed, key 
components of the cost function for a particular well pattern are evaluated by a contaminant 
transport model which assesses the impact of the well pattern on the distribution of the 
contamination over some period of time. Even in 2-D, numerical models of this sort can take 
hours to evaluate a single pattern on a conventional workstation. As the resolution, 
dimensionality, and heterogeneity of the models increase, the time required for this evaluation can 
extend to days. Since even the most efficient, deterministic search techniques usually need to 
evaluate hundreds of patterns, the modeling step becomes a major computational bottleneck in 
the optimization of realistic environmental engineering problems. Much of the work in this area 
has accepted the modeling bottleneck as a given, sometimes simplifying the situation by 
analyzing smaller-scale problems or using simpler models (see [3] for several examples) or 
seeking to reduce the number of times the model must be called by increasing the efficiency of the 
search itself [4]. Other work has highlighted the acute need to break the bottleneck by suggesting 
that multiple realizations of geologic parameters are necessary to address the uncertainty in the 
simulation models [S, 61. 

Work intended to confront the modeling bottleneck directly falls into one of two camps. The 
first approach involves reducing the execution time required by the model through parallel 
algorithms and computer architectures [7, 81. This represents a “rich man’s” approach because of 
the costs normally associated with gaining access to computer resources of this kind. The ANN- 
GA&A approach, in contrast, confronts the .problem by training neural networks to predict 
selected model results. The trained networks, rather than the original model, are then used by a 
some seasrch technique to obtain performance predictions in fractions of a second. 
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The network architecture used for this prediction task is a multilayer perceptron, trained by 
the standard backpropagation learning algorithm [9]. Training and testing examples are obtained 
by associating well pattern variations with selected outcomes such as the amount of 
contamination that has been removed, the highest remaining concentrations after treatment is 
complete, and whether or not contamination has spread beyond certain boundaries. The 
examples are drawn from a knowledge base initially created by running the contaminant transport 
model on a representative sample of well patterns. Since there are no dependencies among the 
model runs, they can be distributed over a network of processors using only the basic remote file 
system and execution facilities that are now a standard part of most network environments. 

Although the trained nets can be coupled with a variety of search techniques, heuristic search 
techniques (namely, the genetic algorithm [lo] and simulated annealing [ 111) have been the 
methods of choice for three reasons. First, they are probabilistic, rather than deterministic, 
search techniques that have been developed by analogy to natural processes. Second, since they 
both employ direct function evaluation rather than derivatives of functions, they allow more 
complex integration of different components. In other words, both apples and oranges can. be 
optimized simultaneously. Finally, the heuristic methods represent a philosophy of search that 
is especially well suited to design optimization problems [ 121. The contaminant transport 
models used to evaluate the effectiveness of each well pattern are crude approximations of 
reality. Their utility lies more in outlining broad hydrological design principles applicable to a 
given site than in predicting precise outcomes. Furthermore, there are many practical engineering, 
managerial, and political constraints that cannot easily be quantified in a cost function. 
Consequently, employing a search strategy oriented toward producing one or a handful of best 
solutions is not likely to be well-received by engineers and planners. Instead, a search technique 
generating a wide range of potentially useful solutions, which are subsequently analyzed for their 
common properties, is generally more useful. Designers can then select especially interesting 
solutions to incorporate into their detailed designs or simply follow the general principles 
suggested by the analyses. 

The main components of the ANN-GA&A methodology are shown in Fig. 1. It is important 
to note that, since the set of optimal solutions generated by the search engines is obtained by an 
ANN estimation process that introduces a certain degree of error, the final step in the 
methodology is to submit that optimal set to the original simulator for verification. The updated 
performance measures supplied by the simulator on this manageable set of scenarios are the ones 
which are used in subsequent decision-making. 

Design Optimization in Petroleum Engineering. Reservoir simulation is now a well- 
established component of reservoir management, as indicated by the role it is given in both 
general discussions [13, 141 and case studies [15, 161 of reservoir management practices. But the 
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use of these simulators in a structured, formal search for more effective recovery strategies is still 
in its infancy. Typically, the simulator is used to evaluate a small set of development scenarios 
that have been selected to test specific hypotheses (see, for example, [ 17- 191). A few 
researchers, however, have examined more structured approaches. 

Aanonsen et al. [20] apply concepts from experimental design and response surfaces to 
optimize a reservoir response variable (such as oil production rate) according to reservoir 
management parameters (such as well location and flow rates). Their largest example involved 
240 one-hour runs of a 5500 grid block 3-D model of a fluvial reservoir. The goal was to build a 
response surface of discounted oil production from sample inputs consisting of the x and y 
coordinates of a single producer and the x coordinate of a single injector. To account for 
uncertainties in the flow field, these three inputs were crossed, as in an experimental design. with 
eight different realizations of the deposition of channel sands. The response surface was 
examined for distinct maxima, which became the optimal solutionS to the problem. This work is 
similar to the ANN-GA&A methodology in that the results of a sample of simulations are used 
to build surfaces which are then searched for solutions. In the ANN-GA/SA approach, however, 
the sampling is performed to create a re-usable archive of data. The archive provides the 
examples from which many different networks figuring in many different searches are drawn. 

Wackowski et al. [21] employ decision analysis techniques to examine over 2500 expansion, 
investment, operational, and CO2 purchase/recompression scenarios to maximize net present 
value of a project at the Rangely Weber Sand Unit. This ambitious, long-range project pulled 
together information from many sources (including expert opinion, economic spreadsheet models 
and reservoir models) into decision trees, from which the highest probability paths were selected. 
The reservoir model combined the vertical response of a single detailed cross-section with the 
area1 response of a till-field streamtube model to obtain full-field forecasts of injected and 
produced fluids. Since several techniques were used to reduce the number of paths in the 
decision tree which required 111 examination, it is unclear how many scenarios the simulator 
actually evaluated. This approach to optimization is similar to the ANN-GA&A methodology in 
that they both examine very large numbers of alternatives. The techniques, however, are quite 
dissimilar in their identification of optimal solutions. Unless it is exhaustive of all possibilities, 
which is unlikely in a real-world problem, a decision tree can only select solutions from paths 
that have been anticipated by its designers. Optimization techniques, in contrast, can uncover 
combinations of inputs which produce results which were not anticipated. 

The most classic application of optimization techniques to facility design is given by Fujii 
and Home [22]. They compare three different search techniques (a derivative-based method, the 
polytope method, and the GA) as applied to the optimization of a networked production system 
by varying parameters such as separator pressure, diameters of tubing, pipeline vs surface choke, 
and so on. Calculations were restricted to relatively simple production rate equations because the 
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use of a reservoir simulator was judged to be too time-consuming. Later, Bittencourt and Home 
[23] used a GA combined with economics and simulation to determine the optimal relocation of 
wells in a proposed 33-well layout and the best platform location. Their experiences reinforce the 
motivation behind the ANN-GA/SA approach: that the advantages of optimization techniques 
will not be fully exploited until some method is found to reduce the computational burden 
imposed by the reservoir simulator. 

These recent advances suggest that the petroleum engineering field is beginning to pay 
attention to more structured approaches to the optimization of development strategies. Use of 
the ANN-GA&A approach can promote further interest in this process by alleviating the 
computational bottleneck created by the reservoir simulator. This is accomplished not by 
eliminating the simulator from the optimization loop, as is done in the Fujii and Home work, but 
by capturing simulator predictions in the lveights of an artificial neural network. In this \vay, the 
results of the optimization continue to benefit from the increased accuracy of predictions that a 
reservoir simulator can provide without having to pay the l%ll price in computational time. The 
critical role played by the simulator is reinforced when the best-performing scenarios generated 
by the search are submitted to it for validation. 

Reservoir Description 

The Pompano Field in the deep water Gulf of Mexico is the test site for this project. BP and 
Kerr-McGee are joint operators of this field. which has been in production since April, 1995. 
They have developed and callibrated a reservoir model, using Landmark’s VIP8 simulator, for the 
Miocene section. 

Field. The Pompano field consists of multiple turbidite reservoirs in a variety of structural traps 
and settings. An intrusive salt body and a large counter-regional growth fault are important 
structural features in the field. The field is divided into three areas, shown in Fig. 2. To the 
north and northwest of the fault is the downthrown Pliocene which consists of 10 independent, 
stacked reservoirs. It is generally underlain by the more sheet-like part of ihe salt body. The 
upthrown Pliocene is south of the salt and growth fault. Its reservoirs are a group of related 
channel sand deposits. An older Miocene channel complex lies to the southeast, in the syncline 
between the Pompano and Mickey salt bodies. This Miocene complex consists of an 
interconnected group of turbidite sands. More than two thirds of the total recoverable reserves 
are estimated to be in the Miocene portion of the field; and our application will focus on this area 
as the reservoir to be managed. 

Reservoir. The Miocene reservoir sands were deposited as mid-slope turbidites in a large, 
aggradational channel complex. There is significant connectivity between channels as younger 
channels frequently eroded into previously deposited ones. ‘Pressure deplehon in successively 
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drilled wells suggests that most of the reservoir comples is in pressure and fluid continuity. 
Grain size ranges from.very fine to medium, with the bulk being fine grained. The average 
thickness of the Miocene sand is 50’ net feet of oil (NFO) in a vertical target interval of 300’ to 
400’, and the thickest sand penetrated is I IO’ NFO in a single sand. 

Trap. A north-south trending channel system draped over an east-west trending structural nose 
forms the trap. The channel sands are laterally confined by the shales and silty shales of the 
overbank deposits. An oil-water contact at -10,200’ true vertical depth sub-sea (TVDSS) has 
been drilled on the southern edge of the field and is implicated on the north/northwest end by 
seismic interpretation and water production. Maximum hydrocarbon column height is 
approximately 600’. The large aquifer system below, estimated to be three-fold larger than oil-in- 
place, is judged to be an advantage to help offset pressure losses during reservoir depletion. 

Production. The Miocene oil has very favorable properties which help in achieving high 
production rates. API gravity is 32’. viscosity is 0.38 cp, and the gas-oil ratio (GOR) was 
initially 1037 scf/stbo and is climbing with increased production. The very restricted range of 
variability in the producing wells emphasizes the connectivity in the Miocene reservoirs. There 
are 12 production wells in operation, fi\re drilled from the platform to the north during Phase I, 
and seven drilled from a subsea template to the south during Phase 11 (see Fig. 3). The average 
initial flow rate was 788 stb/d for the five Phase I wells and 6343 stb/d for the seven Phase II 
wells. The gas and oil production decline curves for 2.67 years of production (from April, 1995 
through December, 1997) and seven additional years of simulated production under injection are 
shown in Fig. 4. The cap on gas production is a function of surface facility limitations. 

Simulator. The heterogeneous anticlinal turbidite reservoir was discretized first into an 
approximately three million cell block model at seismic resolution. It was then scaled up to a 
40,000 cell block simulation model, implemented in VIP@, with dimensions of 40 x 40 in plan 
view and 25 layers. At the time the project was initiated, only a two-cpu software license was 
available for the simulator. So, the simulation time-frame, which would normally have been 15 - 
20 years, was cut to seven years to enable the knowledge base creation phase to be completed 
with dispatch. Seven-year simulations of the existing producers plus one to four injectors 
required an average of 3.5 hours to complete on a dedicated Sun UltraSparc 2 workstation. 

Management Question 

The planning question posed by BP is whether a water injection program will improve 
production from the Miocene. We created a candidate pool of 25 locations for injector wells 
based on high transmissivity, spatial coverage, and economics (see the methodology section 
below for details). The optimization problem was then formulated to search for the 

Well-Field Optimization - 8 



combinations of one to four injector wells which maximize simple net profit, subject to facility 
constraints. Although only one or two injectors were being considered by the Pompano asset 
team at the time this project was initiated, the problem scope was expanded to include the 
possiblity of a more aggressive program. Management time horizons of both three and seven 
years were examined. 

Assumptions. For this management formulation, the following assumptions were made: 

1) The maximum time-period over which alternative water flood scenarios would be assessed 
is January 1, 1998 to January 1,2005. 

2) A candidate pool of 25 injection sites, including both existing production wells and newly- 
drilled injectors, would be developed. Given this candidate pool, the search would identify the 
particular subsets, lvhich could vary in size from one to four wells, which maximize some 
measure of economic performance. 

3) The Phase I producers located in the northern portion of the field would be considered for 
conversion to injectors; but, for engineering reasons, the Phase II producers would not. 

4) Due to limitations on unused slots, only two new injectors could be drilled from the 
northern platform. Drilling any injectors in the southern section would require the emplacement 
of a new subsea template, from which up to four injectors could be drilled. 

5) The 12 production wells would continue to operate as they do now, except for any that 
were converted to injectors. 

6) The precise implementation of the water flood would be kept simple. On January 1, 1998, 
all sites in the well combination would commence injection and would continue to do so for the 
duration of simulation. Individual flow rates would be capped at 20,000 bbl/day; but actual rates 
would be determined by the reservoir simulator’s own algorithms. No phasing of either injection 
or production wells would be considered. 

7) Existing surface facilities constraints would be maintained. However, if a well 
combination’s total demand for sea water to inject were to exceed the current limit of 40,000 
bbl/day, upgrading would be permitted. 

Cost Estimates. The estimates for costs are as follows: 

1) Conversion of producers: Conversion of a Phase I producer into an injector is estimated at 
$7 million for the first injector and $3 million for each subsequent injector. 

2) New injector wells: New locations are considered in two cost categories. A north-south 
dividing line is drawn to separate wells which can be drilled from the platform and those which 
must be drilled from the new subsea template in the south (see Fig. 3). Locations within reach of 
the platform can be drilled for $13 million each. Locations in the southern portion of the field 
require an up-front investment of $25 million to move the drilling platform into place and install 
the template. Each well would then cost $13 million to drill. 
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3) Seawater pumping facilities: Well combinations whose combined peak injection rates 
exceed 40,000 bbl/day will necessitate upgrading the facilities at an estimated cost of $2 million 
for each additional 30,000 barrels pumped. 

4) Maintenance and operation (M&O): M&O costs associated with the 12 existing producers 
are estimated at $182k/well/year. M&O costs for injectors are estimated at $1 million/year for 
the first injector and $500k/year for each additional injector. 

5) Value of produced oil/gas: The oil price used in the net profit calculations was $15.50/bbl. 
The gas price was $2.50/mcf. These values were based on New York Mercantile Exchange 
quotes from May, 1998. 

Performance Measure (Objective Function), The measure used to evaluate the performance of 
individual well combinations and serve as the objective function to be optimized is simple net 
profit (SNP). This measure is the sum of all revenues from sale of the produced oil and gas over 
the time period being evaluated minus the sum of the capital and M&O costs detailed above for 
the same period. No discounting or inflation factors were taken into account. By using a simple 
measure such as this, the number of individual estimates of oil and gas production required for the 
calculations could be kept to a minimum: one estimate each of cumulative oil and cumulative gas 
production over the desired time-frame. For this particular problem, nothing was lost by 
optimizing on the basis of the simpler formulation. For the 550 well combinations comprising 
the knowledge base, the squared correlation over seven years between SNP and net present value 
(which was calculated using a 0.10 discount factor and a 0.03 inflation factor) was ? = 0.99. 

Application of the ANN-GA/SA Methodology 

Fig. 1 shows the general flow of the methodology. The application of each component to the 
Pompano water flood problem is discussed below. 

Create a Knowledge Base of Simulations. This is the most critical component in the entire 
process and consists of several steps: 

DeJine the Problem Scope - In this step, the boundaries of the problem to be optimized are 
determined. The decisions made in this step will guide the sampling of representative runs for 
the reservoir simulations and, as a result, will set the limits within which management questions 
can be asked. Most of the decisions that are made at this time are embodied in the assumptions 
detailed above. One critical issue is the maximum time-frame over which performance will be 
evaluated. The maximum time-frame, seven years in this case, determines the simulation period 
for the reservoir simulation runs. By saving intermediate yearly results, this time-frame can be 
shortened, if desired. But it cannot be extended without further simulation. For the Pompano 
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problem, the seven-year time-frame was selected for practical reasons concerning software 
licensing limitations. 

Another set of issues involves separating factors in the problem which will be held constant 
from those that will be allowed to vary (i.e. the “decision variables”, in decision theory 
terminology). For example, one of the assumptions listed earlier is that production at the existing 
wells will continue as before, except for any that are converted to injectors. This means that field 
development scenarios that involve the drilling of additional production wells cannot be 
considered later on because that option will not have been included in the sampling plan from 
which the knowledge base is created. For the Pompano problem, the only variables are 1) the 
size of the well combinations (from one to four) and 2) which particular wells, from the candidate 
pool of 25, will compose the combination. 

Finally, it is necessary to identify the output variables that will go into the calculation of 
objective functions, such as the SNP measure defined earlier. At this stage, it is most important 
to define the performance measures (e.g. gas/oil production) and parameters (e.g. water injection 
volumes) that must be calculated by the simulator, since these decisions will determine the type 
and timing of output saved from each run. VIP@ provides a wealth of information at each time 
step, ranging from production figures at the well-, region; and field-level to updated 40,000-cell 
arrays of pertinent physical properties. While all that information can be archived for later 
exploitation, only information pertinent to the management questions likely to be posed needs to 
be saved. For the Pompano problem, it was anticipated that only production-related objective 
functions would be of interest; so, no spatial information such as the distribution of pressures or 
oil-in-place was archived. 

Select the Candidate Pool of Well Locations - In theory, injection could occur at any of the 
40,000 cell blocks comprising the reservoir model. In practice, there will be geological and 
engineering constraints on the siting and completion of wells. Furthermore, it is desirable to 
restrict consideration to some manageable number of locations, to avoid wasting simulation and 
search time on unprofitable scenarios. For the Pompano problem, this manageable number was 
set at 25, largely based on past experience with the groundwater examples cited in the literature 
review. The production criteria described below should be considered only suggestive of those 
which could be applied. 

. 

The initial candidate pool consisted of all five Phase I producers, included because conversion 
is less expensive than drilling a new well and because more is known about the reservoir at those 
points, and 50 new locations. The new locations were selected as follows: Each of the 1600 (40 
x 40 in plan view) columns in the model grid was examined to locate those columns with five or 
more (of the 25 possible) layers having either an x- or y-transmissivity greater than 1 .O. A 10 x 
22 block in the southeastern comer of the grid was removed from consideration because the high 
transmissivities in that area were due to intersection with the aquifer. Of the 302 columns 
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meeting these criteria, 50 were chosen, randomly but with some manual adjustment to improve 
spatial dispersion, for evaluation. All 55 initial candidates were submitted to the the simulator as 
l-well injection scenarios, ranked by the total hydrocarbon production (i.e. oil plus gas in oil- 
equivalent units) after seven years of injection, and compared to the no-injection baseline 
production case. The final 25 locations shown in Fig. 4 consist of the top-ranked 2 I locations 
and four of the five Phase I wells that at least performed better than the baseline case. 

Sample over the Decision Variables - This process begins by setting an overall target size for 
the knowledge base, 550 in this case, and sampling over the decision variables until that size is 
achieved. There is an approximate relationship between the number of decision variables and the 
number of examples required for ANN training and testing; but this relationship is also affected 
by the complexity of the physical relationships being modeled by the ANNs. An earlier 2-D 
groundwater remediation problem having 30 prospective well locations had successfully 
employed a total knowledge base of 400 examples (300 for training and 100 for testing). For the 
3-D Pompano problem, targets of 400 training and 150 testing examples were set. The adequacy 
of these targets will be discussed in later sections. 

The examples inthe knowledge base set aside for ANN training contained the no-injection 
baseline case and all 25 l-well injection combinations. The remaining 374 training examples were 
generated in a three-step process: 

1) randomly select the size, from 2-4, of the combination, 

2) randomly select specific well locations, from the set of 25, to fill out the combination, and 

3) cull out duplicates and those violating certain facility constraints (e.g. no more than two 
new wells could be drilled from the northern platform). 

The 150 examples set aside for testing the ANNs generalization performance were generated 
in the same fashion, except that sampling proceeded until ‘exactly 50 2-, 3-, and 4-well 
combinations were obtained. This balancing by size is intended to avoid inadvertently biasing the 
test set in favor of any particular size, which can occur when random methods are applied to a 
relatively small sample. 

By the standard formula for combinations of n elements taken r at a time, the total possible 
combinations of l-, 2-, 3- and 4-well combinations are 25, 300, 2300, and 12,650, respectively. 
The entire knowledge base, including both training and testing examples, contained 25, 158, 184 
and 182 combinations, respectively. The rate of inclusion of each of the 25 locations ranged from 
0.11 to 0.14. 

Carry out the Simulations -‘A key feature of the collection of examples generated in the 
sampling step is that they are independent of each other. The input to example B is not 
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dependent on the outcomes of example A. Consequently, they can be farmed out, either 
manually or in an automated fashion, to as many processors as the simulator’s license allows. At 
the time the knowledge base simulations were conducted for this project, only two single-user 
licenses were available. So, the simulation step required about six weeks to complete. Given 
more licenses, this task could have been completed more quickly. 

In contrast to typical reservoir modeling studies where detailed attention is paid to setting the 
simulation parameters and the analysis of outcomes on a case-by-case basis, both the creation of 
input files and the analysis of output is automated. General rules for assigning skin factors to 
injection locations, determining the layers in which a well would be completed, and setting 
facility constraints, together with appropriate simulation parameters, were obtained from 
members of the Pompano asset team who had been closely involved in the development and use 
of the numeric model. Given these rules and the list of well combinations to simulate, Perl 
scripts tailored input files for each run, launched the simulation, and extracted and saved 
information from each run’s output. 

Train ANNs to Predict Reservoir Performance. The architecture used for all ANNs in the 
Pompano project was a feedforward network, trained by the familiar backpropagation learning 
algorithm [9]. In this paradigm, a network is initialized with small random weights, as is 
illustrated in Fig 5. Training consists of presenting example inputs to the network and calculating 
the corresponding outputs, given the current values of the connection weights. The calculated 
output values are compared to the target values from the examples; and the connection weights 
are updated according to any of several learning algorithms to minimize the difference between 
calculated and target values on the next iteration. Over time, the connection weights associated 
with important relationships grow large and those associated with trivial relationships decay to 
zero. In the particular implementation used for the Pompano project, a conjugate- gradient 
optimization method [24], employing the Polak-Ribiere weight update rule, was used to speed 
convergence and reduce the likelihood of becoming trapped in local minima. A sigmoid was used 
as the transfer function. To avoid overfitting of the network weights to idiosyncratic features of 
the training examples, batch updating of weights and a relatively short number, 300, of training 
epochs was employed. 

The goal of training is to construct a network with maximal capacity to accurately generalize 
its predictions to previously unseen combinations. Accuracy is defined here as the square of the 
Pearson product-moment correlation, 9, between the ANN’s and the simulator’s predictions for 
a given attribute on some set of examples. Training accuracy, then, is the 8 between the ANN 
and simulator predictions on the examples in the training set. Testing or generalization accuracy 
is this same measure on the examples in the test set. Factors that a~ known to contribute to 
generalization include the complexity of the network as reflected in the number of connection 
weights, the size and composition of the training set, and the depee of noise in the 
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training/testing sets [25]. In the current study, noise in the usual sense of the term is not at issue 
since the examples are generated by mathematics, not nature. This is probably the main reason 
why all ANNs in the Pompano problem achieved very high levels of truinittg sef accuracy ($ >= 
.95), a necessary but not sufftcient condition for generalization accuracy. 

The issue of training set size, on the other hand, is much more problematic. The allocation of 
400 combinations to the training set and 150 to the testing set, as described earlier, was based 
mainly on experience gained in two prior optimization studies conducted on a groundwater 
remediation problem. Although these numbers were thought to be low, given the greater degree 
of nonlinearity in 3-D multiphase flow, it was deemed to be prefer-r-able to proceed with a 
manageable number of simulations and leave the question of the relationship between 
training/testing set sizes and predictive accuracy to later research efforts. 

The third factor, network complexity, is addressed by the manner in vvhich variations on a 
given network are constructed and tested, As illustrated by the simplified network in Fig. 5, the 
size of the input and, output layers are fixed at 25 nodes and one node, respectively, these 
dimensions having been established as the minimum necessary to adequately represent the 
Pompano problem. Earlier efforts to express well locations in x-y coordinates to permit a 
network to make spatial interpolations produced greatly de_mded predictive accuracy. So, the 
convention of employing a set of preselected locations that constitutes the domain about which 
questions can be asked has been followed in this work. To keep the architecture similarly 
stream-lined, networks are constructed to predict only one attribute at a time: 7-year cumulative 
oil production, 7-year cumulative gas production, and peak injection volume. The results of 
searches optimizing SNP over three years, which required 3-year versions of cumulative oil and 
gas production, proved to be uninteresting, because there was little performance spread between 
well combinations over such a short period of time. Consequently, the 3-year ANNs will not be 
discussed, except to illustrate an occasional point about neural network training and testing. One 
such point is that, since the knowledge base contained yearly performance data, it could be used 
to train ANNs over any desired time-frame up to the maximum of seven years. 

The only variable architectural element, then, is the number of nodes in the hidden layer. 
This value of this attribute which best promotes generalization is determined empirically by 
training variant networks with anywhere from 1 to IO hidden nodes and selecting the variant with 
the best test set (i.e. generalization) accuracy. The protocol for selecting the best possible ANN 
for a given predictive task cannot end there, however. Backpropagation training is, itself, a 
nonlinear optimization problem and suffers from vulnerability to entrapment in local minima in 
the error-surface, depending on the randomly-assigned initial values of the connection weights. 
The variance caused by those initial values is partly a function of the complexity of the input- 
output relationships being mapped and can also be reduced by increasing the size of the training 
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set. However, with the relatively small training/testing set sizes in the Pompano problem, some 
other procedure had to be developed to confront the initial-weights issue. 

Fig. 6 illustrates the kind of initial-weights analysis that was performed. The graphs show 
mean test set accuracy, + one standard deviation, over 25 different weight initializations for each 
hidden layer size from 1 to 10. The complete training of variant networks for each attribute (e.g. 
3-year cumulative gas) required 250 training/testing cycles. The task was performed by a batch 
process that required a total of about one hour to complete, per attribute. The purpose of this 
exercise was to select a size for the hidden layer with not only the highest mean but also the 
smallest standard deviation, in an effort to identify the network architecture with the best and 

most stable generalization. Having narrowed the number of variants being considered to 25 by 
selecting the size of the hidden layer, the network chosen to participate in the searches was 
simply the variant with the highest test set accuracy. 

Fig. 6 also shows how different the various attributes being predicted can be from each other. 
The easiest attribute to accurately predict is 7-year cumulative gas, as shown by its very high 
means and tiny standard deviations. Defying the usual rule-of-thumb that predictive accuracy 
declines with increasing time, 3-year cumulative gas shows slightly lower accuracies. The 
situation reverts to expectations with cumulative oil, however, 3-year performance being 
considerably easier to predict accurately than 7-year performance. These results underscore the 
critical point that the mapping of inputs to outputs by the ANNs is an empirical procedure. The 
complexities and outcomes of the mapping is a function of the particular examples in the training 
and test sets and do not necessarily reflect more general physical principles. 

Search for Optimal Well Combinations. Although the trained nets can be coupled with a 
variety of search techniques, the. genetic algorithm (GA) and simulated annealing (SA) methods 
were selected for their robustness and flexibility. Like all optimization drivers, these techniques 
are highly sensitive to some of the parameters guiding their search and relatively insensitive to 
others. The parameter settings used in the Pompano project have been determined by extensive 
trial-and-error experimentation. A discussion of these methods is given below. 

Genetic Algorithm - Given the attention that has been paid to GA applications in recent 
years, readers are probably familiar with the basic mechanisms of and rationale for this family of 
search techniques. Consequently, this section will mainly address the specific procedures chosen 
for implementation in the current study. Excellent introductions can be found in Goldberg [lo] 
and Michalewicz [26]. Goldberg is the source for all information concerning the GA presented 
below, unless otherwise noted. 
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The upper portion of Table 1 presents a summary of parameters and procedures used in the 
current GA. The 25 well locations which form the decision variables are represented in the GA 
as a string of 25 bits, each of which can either be on or off. Both the spatial location and flow 
rate of each well is fixed and implicit in the representation. The order of the well locations in the 
string is indicated by their identification numbers in Fig. 3. That numbering is arbitrary, as is 
their location in the bit-string. 

The search is initialized with a set of 100 well combinations. In fact, this initial population is 
simply a random subset of the 150 cases in the ANN testing set. The population size of 100 
chosen for the current study is a fairly small value. In water resources applications, values have 
ranged from 64 [27] to 300 [28] and even up to 1,000 [29]. A larger population helps maintain 
greater diversity but does so at considerable computational cost when the full model is being used 
to generate performance predictions. 

The basic cycle of the GA is as follows. The initial population of 100 well combinations is 
evaluated according to an objective function, SNP in this case. A new generation of 100 
combinations is created from the old population by means of three mechanisms: selection, 
reproduction, and mutation. The new population is then evaluated according to the objective 
function; and the entire process is repeated until some termination criterion is reached. The 
manner in which the three mechanisms have been implemented is as follows: 

1) Selection - This mechanism determines which members of the current generation will be 
selected for carry-over, in one form or another, to the new generation. To make sure that the 
highest-ranking combinations are not lost to the population through accidents of selection and 
crossover, the top three combinations are copied over to the new generation intact. The 
remaining 97 slots in the new population are filled by a form of sexual reproduction, a process for 
which parents must be selected. 

The most popular method of selection is the roulette wheel, in which each member’s 
likelihood of being selected for reproduction is the ratio of its own performance score to the total 
performance score of the population. The larger a given member’s score is in relation to the other 
members’, the larger portion of the roulette wheel it occupies, increasing the odds that the 
member will be selected one or more times for reproduction. When large discrepancies exist in 
the scores of individual members, the members with the higher scores come to dominate the 
population too quickly. Conversely, when differences between members become very small, the 
selection process becomes random. To avoid these cases, the current GA employs selection 
based on the combinations’ rank order [30] rather than their proportional scores. Combinations 
are selected by sampling from a uniform distribution over the ranks, with a bias .factor of 1.5 
serving to favor high-ranking combinations over lower-ranked combinations. 
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Selections for reproduction are made, two at a time, to obtain parent combinations from 
which a child combination will be formed. This process is repeated until 97 children have been 
generated. The same combination may constitute both members of the pair, in which case the 
child is simply a clone of the parent. 

2) Reproduction (Crossover) - The most common form of reproduction is single-point 
crossover. .Child combinations are constructed by breaking the parent combinations apart at 
some randomly selected crossover position in the bit-string and joining segments from each 
parent. For example, given two parents in a 5-bit problem (0 1 0 0 0 and I I 0 I I) and a 
crossover point of 2, two different children could be constructed (0 1 0 I I and I I 0 0 0). 

Creating new combinations from “chunks” of old ones makes the most sense when proximity 
in the bit-string is important. That is, the proximity of wells in the bit-string should reflect one 
or more dimensions of relatedness in the physical problem it represents. This is not necessarily 
the case in the Pompano problem. In fact, the earlier groundwater studies employing the GA had 
discovered a “sticky” well problem. That is, particular wells kept appearing in the optimal 
solutions sets whose individual contributions to the efficiency of remediation were minimal but 
which ivere adjacent in the bit-string to wells making major contributions. To break up these 
spurious associations, a different reproductive mechanism, uniform crossover, is used [31]. In 
this method, the value of each bit in the child string is set independently of every other bit. A 
coin-toss at each bit-position determines from which parent the child will inherit the value for 
that particular bit. The exchange probability can be biased to favor the fitter parent, if any; but 
in this study the exchange probability is kept at an impartial 0.5. 

3) Mutation - Mutation is a way to maintain diversity in a population by arbitrarily changing 
the values of bits in the child combinations according to some rate, often the inverse of the 
population size. A high mutation rate can undermine the effects of crossover; a low one limits 
the introduction of “novelty” into the population. For this study, the inverse rule yields a 
mutation rate of 0.001. 

Simulated Annealing - Like the GA, SA techniques are based on an analogy to a natural 
process. Instead of Darwinian concepts of evolution, which are the foundation of the GA, SA is 
based on an analogy to the cooling of materials in a heat bath. The fundamental idea is that if the 
amount of energy in a system is reduced very slowly, the system will come to rest in a more 
perfect state than if the energy is reduced quickly. When translated into terms pertinent to 
optimization, the energy in the system refers to the tolerance for pursuing apparently poorer 
solutions in an effort to avoid beiig trapped in local minima. As the search proceeds, this 
tolerance is slowly reduced until the search converges to a final optimal solution. SA algorithms 
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have appeared in several applications [32-351. A highly readable introduction to the subject can 
be found in Dowsland [36], which is also the source for the material discussed below, unless 
otherwise noted. 

The SA parameters employed in the current study are given in the lower portion of Table 1. 
SA. represents a return to single-point search, in contrast to the multiple-point or population- 
based search of the GA. At every step, there is only one new well combination being compared 
to the current combination, The initial combination represents the starting point for search. In 
this implementation, the initial combination is the no-injection case. Trial and error 
experimentation with the algorithm has shown that the initial starting point has only a small 
effect on the duration of search. The current study’s annealing algorithm, adapted from the 
standard algorithm as presented in Dowsland [36], proceeds as follows: 

Set the current combination c = initial combination 

Set the current energy in the system t = initial temperature 

Select a temperature decrement function a 

Repeat 

Repeat 

Generate a new combination n in the neighborhood of c 

6 = fitness(n) - fitness(c) 

ifs>Othenc=n 

else 

generate a random value x uniformly in the range (0,l) 

if x < exp(-6/t) then c = n 

Until the iteration counter = iterations/temperature 

Set t = a(t) 

Until termination criteria are met 

The purpose of the temperature parameter in the algorithm is to control the tolerance for 
accepting a newly generated combination n as the current combination c, even when its 
performance score is lower than the current combination’s score. If the new combination’s score 
is greater than the current combination’s, it is always accepted as the new current combination. 
If not, there is a probability of accepting it anyway that is a function of the current temperature t 

in the system, leavened by the magnitude of the difference 6 between the two scores. The initial 
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temperature and the range over which it is allowed to vary are empirically determined parameters. 
The experimenter decides, in advance, what overall percentages of poorer combinations it is 
desirable to accept in the initial and final stages of search and adjusts the temperature range until 
those percentages are achieved. 

On the other hand, the temperature decrement or cooling function and the number of 
iterations per temperature are parameters that have received more attention in the literature. As 
was mentioned earlier, the rate of cooling has considerable impact on the likelihood of converging 
to an’ optimal solution. The fimction chosen for the current study, a geometric decrement 
function with a decrement factor of 0.9, is one of the two most widely used approaches. The 
issue of how many iterations to perform at a given temperature level has been the subject of 
considerable analysis in certain applications [32,34]. While theory suggests that extremely large 
values for this parameter should be used to guarantee that the algorithm is given an adequate 
opportunity to sample the search space, experimentation with this parameter indicates that much 
smaller values, lo:100 times the number of decision variables, can be employed. At a minimum, 
this rule of thumb would imply that iterations/temperature should be set to 250 for the current 
study. Instead, a very small value, 50, has been selected, mainly to permit more timely 
comparisons between ANN- and simulator-based searches. 

The algorithm listed above glosses over an important function, that of generating the new 
combination from the nieghborhood of the current combination. This is another domain- 
dependent decision because the manner in which valid new combinations can be constructed from 
old ones is a function of the problem representation. In the current implemention, the 
temperature parameter is used here, too, to control the extent to which the new combination can 
vary from the current combination. This is equivalent to controlling the size of the local 
nieghborhood beiig searched at a specified temperature level. Initially, the number of well 
locations in the current combination that will be switched is determined by randomly selecting an 
integer from 1 to 10. The particular locations to alter are then selected at random from the 
available 25 locations, subject to the usual facility constraints described earlier, until the 
prespecified number of locations in the current combination .have had their status changed Corn 
on to o#or vice versa. As temperature decreases, the maximum number of locations that can be 
potentially changed is reduced from 10 to 1. 

A small departure, also not shown above, from the serial nature of the standard algorithm has 
been implemented. According to the standard algorithm, the current combination at the end of 
processing at a given temperature level is not necessarily the highest-scoring combination 
encountered during the 50 iterations at that level, because that there is a certain probability that 
an ,inferior new combination will replace the current combination. However, the algorithm 
implemented in the current study remembers the best combination ever encountered and makes it 
the current combination before proceeding to the next temperature level. This is somewhat akin 
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to the practice in the GA of preserving the top combinations from one generation to the next so 
that they are not lost through the vissicitudes of selection and crossover. 

Procedures Common to Both GA and SA Searches - Termination criteria in optimization are 
usually based on some notion of convergence to a single best solution. In keeping with the 
philosophy of heuristic search, however, the current study is more interested in generating sets of 
near-optimal solutions rather than a single best solution. This goal is achieved by tying 
termination criteria to the performance score of the population, in the case of the GA, or the 
temperature, in the case of SA, rather than the performance of the highest-ranking individual 
combination. Search terminates when the mean population or temperature performance score 
fails to increase over five consecutive generations/temperatures or some maximum number of 
generations/temperatures have elapsed, whichever comes first. The maximum number of the GA 
generations is 25; the maximum number of SA temperatures was reduced to 16. to prevent over- 
long searches when the ANN-SA vs. VIP@-SA comparison was being conducted. At the end of 
every generation/temperature, combinations with scores above a predetermined cut-off are saved 
to a file. The top-ranked unique combinations in this file become the set of near-optimal 
solutions. 

The outcome of search in both the GA and SA is influenced by the particular randomly-based 
choices that are made. To avoid the possibly idiosyncratic results of any single search, the 
results of each search in the current study (with one exception, which will be noted below) 
actually consist of combined results from 10 searches, each with a different seed initializing the 
pseudo-random number generator. 

Verify Optimal Combinations with the Simulator. In an actual engineering application of the 
ANN-GABA methodology, the asset team may choose to only submit a handful of well 
combinations to the simulator. For this demonstration project, however, the top 25 well 
combinations from the near-optimal set were submitted for verification. The resulting simulator 
predictions of 7-year oil and gas production and peak. injection volume are used to recalculate the 
SNP. The updated SNPs are intended to become the measure for subsequent analysis and 
decision-making. 

Search Results 

The results of various efforts to identity optimal well combinations to maximize SNP over seven 
years are shown in Tables 2-6. Throughout, the production figures for the no-injection baseline 
case serve as the standard against which alternative scenarios are judged. All values appearing in 
the tables are reported in increments/decrements of the appropriate unit (e.g. dollars, mmcf). 
SNP is calculated according to the cost estimates and definitions described earlier. Scenarios are 
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designated by a list of the identification numbers (see Fig. 3) of the wells making up the 
combination, 

Context Scenarios. It is useful to begin by considering the performance of some simple 
conversions of existing producers in the northern section to injection locations. There is 
considerable appeal to pursuing such scenarios, in part because knowledge of the reservoir is 
much greater in the vicinity of an existing producer than around the new injection locations. The 
effects of converting the four northern producers which survived the initial screening of locations 
(according to the criterion that their effect, singly, on total hydrocarbon production over seven 
years must exceed the no-injection baseline) are shown in Table 2. When the more complex SNP 
performance measure is used, two of the wells now show a negative impact on total field 
productivity and the postive influence of the other two is minimal. The best conversion, well 12, 
produces only a 1.72% improvement over baseline performance. This result illustrates the 
sensitivity of outcomes to the particular performance measure being used and suggests that many 
different measures should be used to evaluate scenarios for field development. 

Best in Knowledge Base. The next most obvious tactic is to query the 550-case knowledge 
base to identi@ the well combinations which yield the highest SNPs. The attraction of this tactic 
is that the oil production, gas production, and peak injection volume inputs to the SNP 
calculations come directly from the simulator, without any estimation errors introduced by the 
ANNs. The drawback is that results are limited to well combinations already in the knowledge 
base. As Table 4 shows, the information in the knowledge base alone makes a considerable 
improvement in expected performance of the field over the simpje single-well conversions of 
Table 2. The best combination, consisting of wells 7 and 9, shows an 11.11% improvement over 
the baseline SNP. 

ANN-GA Search Results. The reason for going to the extra effort of implementing an actual 
search for optimal well combinations is that there may be combinations not sampled in the 
knowledge base which have superior performance characteristics. A directed search technique 
can usually identify peak performers which a random sampling may miss. Since the time 
required to train ANNs and conduct the searches is small (at least once the methodologies are 
mastered) relative to the time required to create the knowledge base, there is ample reason to 
proceed. 

The entire IO-cycle GA search required less than an hour on the same class of workstation 
used to perform the simulations. All well combinations with estimated SNP’s above a certain 
cut-off were saved and combined for post-processing. The top 25 well combinations from this 
pool were submitted to the simulator to verify the oil, gas, and peak injection numbers and 
calculated an updated SNP. The I6 combinations whose updated SNP exceeded the best in the 
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knowledge base are shown in Table 4. The best combination, 7-16-24, yields a 13.5% 
improvement over baseline. 

In addition to fulfilling the final step in the ANN-GA/SA process, that of verifying the 
optimal set of well combinations so that engineering decisions can be made on the best-available 
information, the data generated by the verification runs provide an opportunity to assess the 
final-stage accuracy of the ANNs. The generalization accuracies, expressed as the squared 
correlation between ANN and simulator predictions, of the ‘I-year oil, 7-year gas, and peak 
injection volume ANNs on the 150-case test set were .81, .98, and .99, respectively. To the 
extent that the test set is a good, if low-resolution, representation of the total space over which 
the search might roam, these numbers indicate excellent generalization for the gas and peak 
injection ANNs and borderline-acceptable generalization for the oil ANN. This does not mean, 
however, that the ANNs’ level of accuracy will be maintained during the final stages when small 
subregions of the search space are being searched at high resolution. It is to be expected that 
ANNs trained and tested on a coarse sampling will lose accuracy when required to make fine- 
grained distinctions. And, in fact, the squared correlations between ANN and simulator 
predictions on the top 25 well combinations generated by the ANN-GA search on 7-year oil, 7- 
year gas, and peak injection volume were .39, .38. and .96, respectively. Furthermore, the 
correlation between the SNP estimates based on the ANN predictions and the updated SNP 
figures based on the simulator-verified numbers were virtually zero. What this suggests is that 
the GA, using SNP calculations based on the relatively coarse-grained ANN predictions, is able 
to locate appropriate regions where optimal combinations lie and to identify several near-optimal 
candidates; but only the simulator itself can sort out the relative ranking among that final set of 
candidates. 

ANN-SA Search Results. One issue that needs to be explored is the extent to which the results 
in Table 4 are a function of the ANNs or a function of the GA. To address this question, an 
ANN-SA search was conducted, holding all procedures used in the previous search constant 
except for the substitution of the SA search method. The results, shown in Table 5, are a very 
clear indication that the final set of well combinations is being determined by the ANNs. The . 
shift to a different search method made almost no difference to the final set of well combinations. 

VIP@-SA Search Results. One last question, given that the ANNs’ final stage accuracy does 
deteriorate, is whether superior well combinations are being missed because the ANNs, rather 
than the simulator, are supplying the predictions which are influencing the direction of search. 
The only way to answer this question is to conduct a search in which the simulator is called each 
time a new well combination is being evaluated by the search engine. A VIP@-SA search, the 
results of which are shown in Table 6, was conducted in the following manner: Because the 
simulator was called to supply the oil, gas, and peak injection data needed for the SNP 
calculations and each call required an average of 3.5 hours, only three rather than 10 repetitions of 
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the search were performed. Three workstations ran in parallel, sharing a common cache of results 
so that no time would be wasted on duplicate calls for the same well combination. The SA engine 
was chosen over the GA because the former method tends to converge more quickly. Even so, 
the three searches required several weeks to complete on each workstation, involved 936 unique 
calls to the simulator (or 3276 total computational hours) and matched but did not beat the best 
well combination (7-16-24) found by the ANN-SA search. In other words, using the simulator 
directly in the search did not improve the quality of results for this particular problem; it merely 
took an inordinate amount of computational time. Furthermore, results saved from these runs are 
not likely to-be re-usable in new searches. The well combinations which dominate for the current 
definition of SNP will not necessarily appear at all if another set of cost estimates is used. 

Summary and Conclusions 

Scope of Results. The purpose of the Pompano project has been to apply a methodology 
originally developed to optimize the placement of wells in groundwater remediation to a problem 
in reservoir management. Given this demonstration focus, the project has sought to illustrate the 
improvements in decision-making which can be achieved with only minimal adaptation of 
methods from the earlier work. The following conclusions seem to be warranted by the results 
shown in Tables 2-6: 

Current practice in the industry is to treat the reservoir simulator as a tool for detailed 
analysis of the reservoir. Members of the asset team propose a small number of scenarios for 
well-field development based on the available reservoir characterization data, any existing 
production data, and their own knowledge and experience. These scenarios are submitted to the 
simulator, with results confirming or refuting the team’s proposals and possibly suggesting new 
design variations to explore. Because the emphasis is on detailed examination of results, the total 
number of scenarios that are likely to be considered in this approach is on the order of “tens”. 

Using the archive of simulations as a database, the well-field optimization project has 
introduced a change of perspective, expanding the scope of study from “tens” to “hundreds”. 
The simulator is now viewed as a tool for providing rapid answers to a variety of engineering and 
management questions. Querying the database of simulations has highlighted the considerable 
increase in performance that may possibly be achieved by switching from an approach to 
injection based on converting one or more existing ‘producers to one involving the drilling of three 
to four new injectors, despite the increased capital and operating expenses associated with this 
latter approach. 

Even greater value is mined from the reservoir simulator when the archive of simulations is 
used in its second capacity: as a source of examples for training and testing ANNs. We have 
trained ANNs to predict peak injection volumes and volumes of produced oil and gas over seven 

Well-Field Optimization - 23 



years of injection. The rapid estimates of these quantities provided by the ANNs are fed into 
simple net profit calculations, which in turn are used by the GA or SA to evaluate the 
effectiveness of different well-field scenarios. The search engine explores scenarios not contained 
in the original archive of simulations, expanding the scope of study from hundreds of scenarios 
into the “thousands”. This expansion has enabled the identification of new scenarios which 
exceed the simple net profits of the best scenarios found by simply querying the database of 
simulations 

Issues. Both substantive and methodological issues have been raised in the course of the pilot 
project’s activities: 

Substantive Interpretation of Results - In the discussion of results in Tables 2-6, emphasis 
was placed on the best performing scenario located by each method. However, the results 
actually consist of sets of near-optimal scenarios which can be analyzed in an effort to better 
understand the underlying physical reasons why these scenarios are optimal answers to a 
particular management question. For example, an examination of the top 25 well combinations 
from the ANN-GA search found that well 7 figured in 100% of the combinations, followed at a 
distance by well 24 (32%), well 11 (28%), and well 16 (24%). One might speculate that well 7 
has a larger sweep of neighboring producers that are important to production over the seven year 
time-frame. The other popular wells may be reflective of more conventional wisdom regarding 
the desirability of raising pressures near the boundaries of the reservoir. Given results from 
several searches addressing different management questions (e.g. varying economic parameters 
and time-frames or narrowing the focus to wells of special interest), the asset team has the 
opportunity to build a body of operating principles about the field, some of which may transfer 
to other fields, as well. 

ANN Accuracy Issues - An ANN’s generalization accuracy has to be examined in two 
ways. First, there is the question of how accurately it makes predictions over the entire space in 
which predictions might be called for by the search engine. In the Pompano problem, these initial 
accuracies were estimated by correlating ANN and simulator predictions on the, 150 cases in the 
test set. Accuracy varied considerably by both the attribute to be predicted (oil vs. gas, for 
example) and the time-came over which the prediction was being made (three vs. seven years). It 
appears, however, that despite errors of estimation, the search engines still gravitated to the 
specific regions where optimal well combinations were to be found and generated several near- 
optimal candidates. It was then the job of the simulator to sort out the proper rankings among 
the “finalists”. One possible drawback to this technique, that ANN-introduced errors would 
cause the search to completely miss the best combinations, proved not to be true for this 
particular problem. In a comparison search where the simulator itself was called upon to provide 
predictions as demanded by the search engine, the best combination located in the ANN-based 
searches was matched but not beaten. Still, this outcome might not be born out on other 
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management questions or over longer time-frames. Consequently, a critical research task is to 
identi@ strategies for improving both initial and final accuracy. An example of a technical 
strategy which might improve accuracy involves simplifying the prediction task for the ANNs 
by training separate nets for the 2-, 3-, and 4-well combinations. A more knowledge-based 
approach to the problem would involve supplying more information about the reservoir to the 
nets, in the form of more inputs. For example, instead of describing a well combination as a set 
of binary inputs, the local average permeability of each well which will be turned on in the 
combination could serve as the inputs. 

Uncertainties in the Underlying Model - A third concern that has been raised in the technical 
reviews of this project involves uncertainties associated with the underlying reservoir simulator. 
So far, a single model of the reservoir has been taken as a kind of norm or best-bet on which to 
base reservoir management decisions. However, this approach tends to gloss over the possibility 
that reasonable alternatives to the normative model exist which may greatly affect the optimal 
solutions to management questions. Decision-makers are better served if they are presented with 
at least some indication of how great a variation is introduced by considering these alternatives. 

The problem of estimating and managing model uncertainties is huge and will not be solved 
anytime in the near future. There are, however, incremental strategies for incorporating aspects 
of uncertainty analysis into the ANN-GA/SA methodology at different stages of the 
optimization process. A very simple strategy might be to rank each well location by the relative 
certainty of the physical properties in its vicinity. The objective function being optimized would 
contain a penalty term based on that rank, which will reflect the informational-risk associated 
with including that well in the scenario. A ‘much more laborious approach would be to create 
separate knowledge bases for a small set (e.g. three) of geologically-reasonable alternative models 
and carry out the entire process separately for each one, comparing results for common locations. 
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Population Size 
Initial Population 
String Length 
Selecztroor Mating: 

Selection Bias Factor 
Crossover: 

Method 
Exchange Probability 

Mutation Rate 
Termination Criterion 

TABLE l--SEARCH PARAMETERS 

Genetic Algorithm (GA) 

100 
Randomly generated patterns 
25 (one bit per well) 

Rank order 
1.5 

Uniform 
0.5 
0.001 
5 generations without exceeding peak mean 
fitness, 25 generations maximum 

Simulated Annealing (SA) 

Initial Pattern 
Cooling Schedule: 

Iterations/Temperature 
Decrement 
Starting Temperature 

Neighborhood Search: 
Perturbations at t, 
Perturbations at t,, 
Reduction Schedule 

Termination Criterion 

All 25 wells off 

50 
0.9 (i.e. tn+] = t,- 0.9tJ 
0.25 

Up to 10 randomly selected wells 
1 randomly selected well 
Same as cooling schedule 
5 temperatures without exceeding peak mean 
fitness, 16 temperatures maximum 
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TABLE 2--PERFORMANCE MEASURES OF SELECTED SINGLE-WELL 
CONVERSION SCENARIOS RELATIVE TO THE NO-INJECTION CASE 

~ Scenario 
Simple Net Profit 

(millions) 
Gas costs 

(MCF) (millions) 

No Injection 0.00 0 0 0.00 

Well 12 -5.75 +3,227 -17,223 +12.72 

Well 13 

Well 14 

+14.68 +5,696 -24,353 +12.72 

+3.59 +3,859 -17,400 +12.72 

Well 15 -10.18 +688 -3,250 +12.72 

TABLE 3--TOP 10 WELL COMBINATIONS FROM THE 550-CASE 
KNOWLEDGE BASE RANKED BY THEIR IMPROVEMENT OVER BASELINE 

ON SIMPLE NET PROFIT 

Scenario 
Simple Net Profit 

(millions) 
Gas 

(MMCF) 
costs 

(millions) 

7-9 +95.08 +11,899 -11,139 +61.5 

7-24 +94.95 +11,715 -11,057 i-61.5 

6-19-21-24 +9 1.62 + 19,007 -12,362 +94.5 

7-16-18-24 +9 1.20 +15,152 -18,863 +96.5 

6-7-10-16 +87.67 +14,307 -15,832 +94.5 

7-11-15-16 +86.3 1 +14,176 -17,675 +89.2 

7-25 l-86.10 +11,233 -10,600 +61.5 

6-7-10 -f-85.44 +12,275 -10,728 +78.0 

6-7-9 3-81.22 +12,676 -14,103 +80.0 

7-l 1-21-23 +78.90 +13,666 - 14,567 +96.5 
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TABLE 4--VIP@ Verified Simple Net Profit 
(SNP) of Well Combinations from the ANN-GA 

Search Which Exceed the SNP of the Best 
Combination in the Knowledge Base 

Scenario 
Simple Net Profit 

(millions) 

7- 16-24 +115.54 

7-16-23 +114.85 

7-l 1-16 +113.89 

l-7-24 +109.76 

7-19-24 +109.76 

6-7-24 +108.53 

6-7-23 + 107.96 

7-16-25 + 107.88 

7-l 1-19 + 106.94 

l-7-11 +105.66 

6-7-l 1 +104.02 

7-20-24 +101.05 

7-l l-20 +99.14 

7-9-20 +97.66 

6-7-25 +96.83 

7-9-16 +95.42 
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TABLE 5--VIP@ Verified Simple Net Profit 
(SNP) of Well Combinations from the ANN-SA 

Search Which Exceed the SNP of the Best 
Combination in the Knowledge Base 

Scenario* 

7-16-24 

7-l 6-23 

7-11-16 

l-7-24 

7-19-24 

6-7-24 

7-16-25 

7-11-19 

1-7-11 

6-7-l 1 

6-l 1-19 

Simple Net Profit 
(millions) 

+115.54 

+I 14.85 

+113.89 

+ 109.76 

+109.76 

+ 108.53 

+107.88 

+106.94 

+105.66 

+104.02 

102.68 

7-20-24 +101.05 

7-11-20 +99.14 

7-9-20 +97.66 

7-9-16 +95.42 

I *Bold face scenarios were also located by the ANN-GA 
search (see Table 4). I 
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TABLE 6--Simple Net Profit (SNP) of Well 
Combinations from the VIP@-SA Search Which 
Exceed the SNP of the Best Combination in the 

Knowledge Base 

Scenario* 
Simple Net Profit 

(millions) 

7-l 6-24 +115.54 

l-7-24 +109.76 

7-19-24 +109.76 

I-7-23 +108.73 

5-7-23 +107.96 

7-16-25 +107.88 

7- 16-20-24 +103.73 

7-20-24 +101.05 

7-9-20 +97.66 

l-7-23-24 +97.6 1 

l-7-1 l-23 +97.28 

I-7-20-24 +97.28 

i-7- 1 O-23 +97.02 

i-7-25 +96.83 

7- 16-20-25 +95.83 

.-7-10-24 +95.27 

‘Bold face scenarios were also located by the ANN-SA 
search (see Table 5). 
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Fig. l--Components of ANN-GA/SA Methodology 
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Fig. 2--Pompano Field 
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Fig. 5--Diagram of an ANN to predict cumulative 7-year oil production given a 
well combination as input. Connection weights between all input nodes except 
the first and last have been left out for visual simplicity. 
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Fig. 6--Mean ANN generalization accuracy (shown by solid lines), +_ one standard 
deviation (indicated by broken lines), as a function of the number of hidden 
nodes in the network, summarized over 25 random initializations of the network 
connection weights. 
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